Auto-phosphorylation of a voltage-gated K+ channel controls non-associative learning.

نویسندگان

  • Shi-Qing Cai
  • Yi Wang
  • Ki Ho Park
  • Xin Tong
  • Zui Pan
  • Federico Sesti
چکیده

Here, we characterize a new K(+) channel-kinase complex that operates in the metazoan Caenorhabditis elegans to control learning behaviour. This channel is composed of a pore-forming subunit, dubbed KHT-1 (73% homology to human Kv3.1), and the accessory subunit MPS-1, which shows kinase activity. Genetic, biochemical and electrophysiological evidence show that KHT-1 and MPS-1 form a complex in vitro and in native mechanosensory PLM neurons, and that KHT-1 is a substrate for the kinase activity of MPS-1. Behavioural analysis further shows that the kinase activity of MPS-1 is specifically required for habituation to repetitive mechanical stimulation. Thus, worms bearing an inactive MPS-1 variant (D178N) respond normally to touch on the body but do not habituate to repetitive mechanical stimulation such as tapping on the side of the Petri dish. Hence, the phosphorylation status of KHT-1-MPS-1 seems to be linked to distinct behavioural responses. In the non-phosphorylated state the channel is necessary for the normal function of the touch neurons. In the auto-phosphorylated state the channel acts to induce neuronal adaptation to mechanical stimulation. Taken together, these data establish a new mechanism of dynamic regulation of electrical signalling in the nervous system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic regulation of the voltage-gated Kv2.1 potassium channel by multisite phosphorylation.

Voltage-gated K(+) channels are key regulators of neuronal excitability. The Kv2.1 voltage-gated K(+) channel is the major delayed rectifier K(+) channel expressed in most central neurons, where it exists as a highly phosphorylated protein. Kv2.1 plays a critical role in homoeostatic regulation of intrinsic neuronal excitability through its activity- and calcineurin-dependent dephosphorylation....

متن کامل

Time domains of neuronal Ca2+ signaling and associative memory: steps through a calexcitin, ryanodine receptor, K+ channel cascade.

Synaptic changes that underlie associative learning and memory begin with temporally related activity of two or more independent synaptic inputs to common postsynaptic targets. In turn, temporally related molecular events regulate cytosolic Ca2+ during progressively longer-lasting time domains. Associative learning behaviors of living animals have been correlated with changes of neuronal voltag...

متن کامل

Expression of voltage-gated potassium channels decreases cellular protein tyrosine phosphorylation.

Protein tyrosine phosphorylation by endogenous and expressed tyrosine kinases is reduced markedly by the expression of functional voltage-gated potassium (Kv) channels. The levels of tyrosine kinase protein and cellular protein substrates are unaffected, consistent with a reduction in tyrosine phosphorylation that results from inhibition of protein tyrosine kinase activity. The attenuation of p...

متن کامل

Repression of Matrix Metalloproteinases and Cytokine Secretion in Glioblastoma by Targeting K+ Channel: An in Vitro Study

Introduction: Glioblastoma is an aggressive malignancy of human brain with poorly understood pathogenesis. Voltage-gated potassium (Kv) channels and Matrix metalloproteinases (MMPs) are highly expressed in malignant tumors and involved in the progression and metastasis of glioblastoma. The purpose of this study was to determine whether a voltage-dependent potassium channel blocker could modulat...

متن کامل

Phosphorylation of critical serine residues in Gem separates cytoskeletal reorganization from down-regulation of calcium channel activity.

Gem is a small GTP-binding protein that has a ras-like core and extended chains at each terminus. The primary structure of Gem and other RGK family members (Rad, Rem, and Rem2) predicts a GTPase deficiency, leading to the question of how Gem functional activity is regulated. Two functions for Gem have been demonstrated, including inhibition of voltage-gated calcium channel activity and inhibiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 28 11  شماره 

صفحات  -

تاریخ انتشار 2009